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Abstract

We consider the problem of rendering high-resolution im-
ages on a display composed of multiple superimposed
lower-resolution projectors. A theoretical analysis of this
problem in the literature previously concluded that the
multi-projector superimposition of low resolution projec-
tors cannot produce high resolution images. In our re-
cent work, we showed to the contrary that super-resolution
via multiple superimposed projectors is indeed theoreti-
cally achievable. This paper derives practical algorithms
for real multi-projector systems that account for the intra-
and inter-projector variations and that render high-quality,
high-resolution content at real-time interactive frame rates.
A camera is used to estimate the geometric, photometric,
and color properties of each component projector in a cali-
bration step. Given this parameter information, we demon-
strate novel methods for efficiently generating optimal sub-
frames so that the resulting projected image is as close as
possible to the given high resolution images.

1. Introduction

Traditional attempts at seamless multi-projector displays
have been confined to edge-blended tiled projectors, where
multiple projectors are configured to minimize the inter-
projector overlap and maximize the overall size of the dis-
played image [14, 16, 2, 12, 13, 7]. These tiled approaches
offer scalability of resolution and brightness as well as the
ability to have arbitrary aspect ratios. However, the per-
formance of the array is often limited by the quality of the
worst projector in the array. The brightness and contrast
of the system is typically limited by the brightness of the
lowest brightness projector and the projector with the worst
black state respectively. Additionally, if a single projector
in a tiled array drifts from color or luminance calibration,
the entire projector array needs to be changed to accommo-
date the worst projector, or else the drifting projector needs
to be replaced. If even one projector goes out due to a lamp
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Figure 1: Example multi-projector display systems with (a)
four and (b) ten superimposed projectors.

failure, the opportunity cost is incurred on the whole bank.

The key question is how to effectively scale along all im-
age quality attributes and yet ensure a reliable system not
limited by the performance or quality of the worst projec-
tor. We argue that through superimposed projection (where
multiple projectors are substantially superimposed), we ob-
tain a fundamentally more robust system that can better
compensate for common intra- and inter-projector varia-
tions (e.g. color and luminance drift) that plague conven-
tional tiled displays. Furthermore, superimposed projectors
are able to better utilize the full brightness range of all com-
ponent projectors. The reliability of superimposed projec-
tion stems from the fact that a single component projector
is only a fractional contribution to the overall image quality.
For example, when a single projector fails in a ten-projector
superimposed system, the user would barely notice the fail-
ure since each projector contributes around 1/10th of the
brightness of the bank and humans have a nonlinear re-
sponse to brightness. Color and luminance drifts are also
not noticeable within a wide range of tolerance since the
entire image drifts incrementally and opposing drifts often
cancel.

A very important issue with superimposed projection is how
to avoid the blurring and apparent loss of resolution due
to the superimposition. It is natural to examine the prob-
lem of multi-projector super-resolution, the dual of multi-



camera super-resolution. The goal of multi-projector super-
resolution is to produce a high resolution frame via the
superimposition of multiple low resolution images or so-
called subframes. While rigorous analysis of the theory and
limits of camera super-resolution exists [1, 10], the analy-
sis of multi-projector super-resolution has been limited in
scope. Previous work has shown the viability of super-
resolution via superimposition only in the special case when
the resulting superimposition grid is uniform [11, 15]. This
assumption is clearly invalid in the case of multi-projector
superimposition. Moreover, Majumder [11] concluded that
resolution enhancement is impossible when the superim-
posed grid is non-uniform.

In recent work [5, 6], we showed that in fact super-
resolution via superimposed projection is theoretically pos-
sible even in the case of non-uniform sampling. Specif-
ically, we can generate subframes that are themselves
severely aliased, but when superimposed combine to form
alias-free high resolution images. If the low resolution pixel
reconstruction filter (point spread function or PSF) band-
width is greater than the Nyquist frequency of the low reso-
lution image, each low resolution image can be engineered
to contribute frequencies higher than its Nyquist frequency.
Of course, this means that each subframe will have low fre-
quency aliasing. By properly generating the complementary
subframes, we showed that we can cancel the low frequency
aliasing and reconstruct alias-free high frequencies thatare
beyondthe Nyquist frequency of a single projector. Thus,
the projector subframe generation process can be thought of
as similar to the alias cancellation in filter bank theory.

This paper examines subframe generation in the context of
practical multi-projector display systems. While previous
work [5] focused on theory and validation via computer
simulation assuming all the projectors were identical, this
work describes practical algorithms to account for color
and luminance differences among physical projectors and
discusses actual real-time implementation on commodity
graphics hardware.

Jaynes and Ramakrishnan [9] first considered the prob-
lem of multi-projector superimposed projection and demon-
strated some resolution enhancement where the projectors
overlapped. They approximate a warped subframe as the
sum of regionally shifted subsampled images. Each such
image is initially estimated in the frequency domain by
phase shifting the frequencies of the target image to be ren-
dered. Then, a greedy heuristic process is used to recur-
sively update pixels with the most error globally. The au-
thors point out that this formulation not only is sub-optimal
(by approximating the true homography), but also precludes
real-time rendering applications because of its complexity.
In contrast, we derive in this paper an optimal, provably
convergent subframe generation algorithm that leads to ef-

ficient real-time rendering. Moreover, it also accounts for
intra- and inter-projector variations.

Section 2 discusses our model for multi-projector superim-
position. This model accounts for relative geometric, photo-
metric and color distortions among the component projec-
tors. Section 3 presents techniques for robustly and accu-
rately estimating these model parameters. Section 4 derives
efficient practical algorithms for real-time rendering at in-
teractive frame rates. Section 5 demonstrates experimental
results on real multi-projector display systems (see Figure
1) built with commodity projectors and graphics hardware.
Finally, Section 6 concludes the paper by summarizing the
contributions and pointing to future directions.

2. Modeling Multi-Projector Superimposition

This section models the overall image formation process of
multiple superimposed projectors. Assuming a Lambertian
screen surface, an estimate of the final projected image is
given by the summation of the individual projector images.
The key then is to model the imaging process from input im-
age to the framebuffer of each component projector; let the
resolution of the frame buffer of a component projector be
anN1 ×N2. We next choose a reference ”canvas” with re-
spect to which each simulated projector image is computed.
The resolution of the reference canvas is the desired reso-
lution at which the final simulated image is computed. Let
the resolution of the display canvas be chosen asM1 ×M2.

Mathematically, the 2-D model for aK projector system
may then be represented as:

x̂ =





K∑

k=1

Ak Lk Ck yk
︸ ︷︷ ︸

zk



 + b (1)

yk = γ−1
k (y′

k)

Ck = IN1N2×N1N2 ⊗ C̃k

Lk = L̃k ⊗ I3×3

Ak = Ãk ⊗ I3×3

y′
k is a 3N1N2 × 1 vector that represents theN1 × N2

color image (assuming the typical three R,G,B color planes)
that is input to the frame buffer of thekth projector. The
vectory′

k is formed by ordering the color image by color
plane and by rows. Hence, the first three elements are the
R, G, B components of pixel (0,0), while the next three el-
ements are the R, G, B components of pixel (0,1) and so
on. Thekth projector applies a vector-valued nonlinear in-
verse gamma functionγ−1

k (·). Projectors may apply differ-
ent inverse gamma curves to different color planes. Thus,
yk represents the linear-space input image to projectork.



The3N1N2 × 3N1N2 matrixCk represents a color trans-
form that converts from the projector-dependent RGB color
space into a common projector independent reference space
such as XYZ or to the RGB space of a reference cam-
era. In this paper, we will denote the common reference
space as XYZ although it may or may not correspond to
the actual CIE XYZ color space.Ck is completely defined
by the 3 × 3 color transformC̃k via the decomposition
Ck = IN1N2×N1N2

⊗ C̃k, where⊗ represents the Kro-
necker product operator andIN1N2×N1N2

represents the
N1N2 ×N1N2 identity matrix.

The 3N1N2 × 3N1N2 diagonal matrixLk represents
the spatial luminance rolloff due to lens vignetting in the
projector-camera system. This models the fact that the cam-
era image of a flat field of digital values projected by a
projector exhibits spatially varying attenuation.Lk may
be decomposed asLk = L̃k ⊗ I3×3, where L̃k is an
N1N2 × N1N2 diagonal matrix. Each element along the
diagonal scales the RGB pixel values at a given framebuffer
location equally. However, the scaling for different pixel
locations is different.

The3M1M2 × 3N1N2 matrixAk encapsulates the effects
of geometric distortion, pixel reconstruction point spread
function and resample filtering operations. For clarity, its
derivation is given in the Appendix.

Finally, the3M1M2×1 vectorb in equation (1) represents
the total black offset image of the system. It may be derived
from the image the camera captures when all projectors are
projecting images of all zeros. Due to light leakage, the
camera captures some light in this case. This camera im-
age, when warped and resampled to the reference coordi-
nate system, gives the black offsetb of the system.

3. Model Parameter Estimation

This section discusses methods for accurately estimating
the parameters of the above model for a practical multi-
projector display system. To this end, we introduce a cam-
era into the set up to automatically and correctly character-
ize the differences (e.g. geometry, luminance, color) among
the projectors in a one-time calibration procedure.

The projectors are likely to be geometrically misaligned
with respect to one another due to their different optical
paths and physical placement. For each projector in se-
quence, an efficient structured-light coding technique com-
putes the dense projector-camera mapping to cover every
subframe location. Specifically, the steps are as follows:

1. Project each coded light pattern onto the scene in suc-
cession and capture the result. Horizontally and ver-
tically striped binary light patterns are used to repre-
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Figure 2: Different colored grid lines projected out of four
superimposed projectors (a) before and (b) after geometric
calibration.

sent the bitplanes of the Gray-coded binary represen-
tation of the row and column indices [3]. Invalid pix-
els that lie outside the projected space or that do not
offer enough discrimination between black and white
are automatically masked off.

2. Decode bit sequences at every camera pixel and refine
with coarse-to-fine analysis. Through multi-scale cor-
ner analysis and interpolation [4], one can accurately
establish the subpixel mapping for every camera coor-
dinate and corresponding projector coordinate.

3. Parametrize the dense correspondences if applicable.
For simplification with planar display surfaces, each
mapping may be further reduced to a 3x3 homography
using least squares over the dense set of correspon-
dence pairs. Other higher order models may be used
to account for non-planar display surfaces and non-
negligible lens distortion.

Unlike traditional approaches, this technique robustly com-
putes the geometric mapping to subpixel accuracy regard-
less of the projector configuration and underlying dis-
play surface (handles even arbitrary and multiple 3-D ob-
jects). These projector-camera mappings are subsequently
remapped to the canvas coordinate system to finally obtain
the warpsmk(·) from each projector to the reference can-
vas, and hence operatorsAk (See Appendix). For super-
imposed projection, the reference canvas typically corre-
sponds to a region that lies entirely in the intersection of all
the projectors’ outputs. Figure 2 shows an example of dif-
ferent colored grid lines projected from four superimposed
projectors. These grid lines become well aligned and crisp
after the proposed calibration process.

In addition to geometry, the system also measures the lumi-
nance profile and color transform for each projector. The
camera response to the maximum red, green and blue of
each projector is recorded and remapped to projector co-
ordinates. Note that a pure red from a projector results
in red, green and blue camera sensor responses in gen-



eral, and similarly for projecting pure green and pure blue.
Thus, the color and luminance characteristics of thek-th
projector are jointly defined by the multiplication with a
3N1N2 × 3N1N2 block diagonal matrix̂Ck to formzk

zk = Ĉk yk

=








Ĉk,0

Ĉk,1

. . .

Ĉk,M















yk,0

yk,1

...
yk,M








whereM = N1N2 − 1. Thus, the camera response (in
projector space) to the theith projector pixel iszk,i =

Ĉk,i yk,i. The model of equation (1) requires that eachĈk,i

be factorizable as a constant per-projector color matrixC̃k

followed by luminance scaling. This means that

Ĉk,i =
(

L̃k,i

)

I3×3

︸ ︷︷ ︸

Lk,i

C̃k

Note thatL̃k,i is a scalar value that varies withi. A conve-
nient approach to this factorization that works well in prac-
tice is to choose

L̃k,i = 1
3

(1,2)
∑

(u,v)=(1,0)

Ĉk,i(u, v) ∀i, C̃k = 1
N1 N2

∑

i

Ĉk,i

L̃k,i

It is also possible to measure the black offset of each indi-
vidual projector or instead the overall black offset (i.e.b
in equation (1)). By definition, the projectors always repro-
duce this offset no matter what image is being projected, so
the display system can be no dimmer than this level. Since
black offset seams are not typically present with superim-
posed projection, there may be no need to explicitly account
for black offset in the subframe generation process.

4. Subframe Generation Algorithms

In this section, we derive practical subframe generation al-
gorithms for multiple superimposed projectors. First, Sec-
tion 4.1 discusses the construction of a target rendering
space. Each input image frame is mapped into the target
rendering space, much like how an image is mapped into
printer space via gamut mapping before printing. Section
4.2 presents an iterative algorithm for optimal subframe
generation. Section 4.3 derives a near-optimal, efficient,
non-iterative algorithm for subframe generation that enables
real-time perfomance. Alias-cancellation is achieved by a
bank of filters designed to have compact support.

4.1. Defining the Target Rendering Space

The target rendering space defines the space of allowed col-
ors and intensities. This space is a subset of the feasible
space of signals achievable by the system of superimposed
projectors. An input imagex, assumed to be in gamma un-
corrected linear space, may be represented in the target ren-
dering space using the following mapping:

x̄ = L̄C̄x + b̄ (2)

The3M1M2×3M1M2 matrixC̄ represents a color trans-
form that converts from the color space of the input image
(such as sRGB) into the reference XYZ color space. As be-

fore,C̄ is completely defined by the3×3 color transform̃̄C

via the Kronecker product with anM1M2 ×M1M2 iden-
tity matrix. The luminance target may also be decomposed

analogously. One way to choose a consistent matrix˜̄C is
to define it based on the intersection of individual gamuts

of C̃k, i.e. ˜̄C = ∩kC̃k The luminance target̄L may be

defined by˜̄L =
∑K

k=1 ÃkL̃k to maximize brightness. The
target black offset may be chosen asb̄ = b to maximize
contrast.

4.2. Iterative Subframe Generation

In the above equations, one may observe that theL̄ is diag-
onal and thus commutes with̄C in equation (2), i.e.

x̄ = C̄L̄x + b̄ (3)

If we apply the color transformC−1
k

(

IN1N2×N1N2
⊗ ˜̄C

)

to the subframesyk, we may rewrite equation (1) as

x̂ =

K∑

k=1

Ak Lk CkC
−1
k

(

IN1N2×N1N2
⊗ ˜̄C

)

yk + b

=

K∑

k=1

Ak

(

IN1N2×N1N2
⊗ ˜̄C

)

Lk yk + b

=
(

IM1M2×M1M2
⊗ ˜̄C

) K∑

k=1

Ak Lk yk + b (4)

= C̄

K∑

k=1

Ak Lk yk + b (5)

Equation (4) follows from the fact that the color transforma-
tion may be applied after warping to the reference canvas
since this is equivalent to warping a color transformed im-
age. Comparing equations (5) and (3), we see that it suffices



to choose subframesyk such that

{yk} = argmin
{yk}

∥
∥
∥
∥
∥
L̄x −

K∑

k=1

Ak Lk yk

∥
∥
∥
∥
∥

2

subject to:0 ≤ yk(i) ≤ 1, ∀i, k

(6)

The optimization problem of equation (6) may be solved
using an iterative gradient descent algorithm that may be
expressed entirely in terms of localized image processing
operations. The optimal subframes are computed using the
following iterative gradient descent algorithm:

y
(0)
k = LT

k AT
k x (initial guess) (7)

x̂(n) =
K∑

k=1

Ak Lk y
(n)
k (modeling)

∂J

∂yn
k

= −LT
k AT

k

(

L̄x − x̂(n)
)

(gradient)

yn+1
k = ψ

(

yn
k − µ

∂J

∂yn
k

)

(correction)

ψ(y(i)) =







y(i) y(i) ∈ [0, 1]
0 y(i) < 0
1 y(i) > 1

, ∀i (8)

{y∗
k} = lim

n→∞
{y

(n)
k } (9)

µ is a momentum parameter indicating the fraction of error
to be incorporated at each iteration. The algorithm consists
of two passes. In the modeling pass, we computex̂(n) from
the current guesses of the subframesy

(n)
k . Then, a correc-

tion pass updates the subframes based on prediction errors.
This algorithm may be intuitively understood as an iterative
process of computing an error in the reference high resolu-
tion coordinate system and projecting a filtered version of
it back onto the subframe data to form better estimates of
the subframes. The operatorAT

k is simply another com-
pactly supported resampling filter obtained from equation
(14). Since the problem is convex with convex constraints,
this process is guaranteed to converge to the optimal solu-
tion.

4.3. Fast Filter Bank Subframe Generation

The above iterative algorithm produces optimal subframes
for an arbitrary number of component subframes. It is note-
worthy that it does however require access to all subframes
to compute the model prediction̂x(n). For systems with-
out shared memory, the algorithm may be unsuitable for
scalable real-time implementation, since each computation
module must redundantly compute the entire forward pass

(a)

(b)

(c)
(1, 1)(2, 2)

Figure 3: Deriving component subframe generation filters.
A 2 × 2 filter neighborhood is used for convenience. (a)
Training impulse subframes. (b) Subframe response at pixel
locations (1,1) and (2,2). (c) Resulting per-pixel2× 2 filter
coefficients.

before it can derive its subframes. This bottleneck only be-
comes worse as the number of subframes is increased. Fur-
ther, even if shared memory is available, performing more
than one or two iterations of the algorithm would be com-
putationally infeasible in real-time.

In [5], we showed that scalale subframe generation may be
accomplished by bank of linear filters. In this case, the op-
timal linear filters may be derived by directly finding the
impulse response (possibly space varying) of a linear ap-
proximation to the nonlinear optimal iterative algorithm of
Section 4.2. The linear system approximation to the non-
linear iterative algorithm of (7-9) is made by simply elimi-
nating the nonlinear clipping operation of equation (8). The
filter generation method is reviewed here for completeness.

To find the filter coefficients for thekth subframe that filter
the neighborhoodN (mk(i)) for a giveni, we evaluate the
response at locationi in thekth subframe to the linearized
iterative algorithm driven with impulse inputs. Successively
measuring the responses ati to single impulses at various
locationsj is too time consuming to be practical. Instead,
we evaluate subframe responses at multiple subframe pix-
els in parallel by restricting the neighborhoods to a finite
W ×W window while spacing impulses apart byW (See
Fig. 3) . Thus onlyW 2 impulse training images are needed
to cover all the locations ofN (mk(i)). This spacing elim-
inates spurious aliasing due to multiple impulses contribut-
ing to a single observed response at a time. TheW ×W

filter coefficientshk,i[w] are given by

hk,i[wt,k,i] = yk[i], ∀t

wherewt,k,i represents the location of an impulse in the
W ×W neighborhoodN (mk(i)) for thetth impulse train-
ing image. Since there areW 2 training images, each image
determines a unique filter coefficient ofhk,i[w]. Once com-
puted, the filter may be used to compute the responseyk[i]



to an arbitrary input using the following equation

yk[i] =
∑

w

hk,i[w]xi[w] (10)

wherew spans theW × W neighborhood ofx around
mk(i).

Fig. 3 illustrates the above the process to compute a2 × 2
filter for a specific subframe location of a component sub-
frame. The space-varying filter coefficients must be stored.
This may seem a daunting task requiring special parameter-
izations. However, if commodity graphics hardware is used
for the rendering, the required texture memory is readily
available.

Considering all color planes, this spatially varying filtering
operation may be represented as a matrix multiplication of
x with a3N1N2×3M1M2 matrixH. Considering the color

transformationC−1
k

(

IN1N2×N1N2
⊗ ˜̄C

)

, we have a com-

plete recipe to compute the optimal subframes from an in-
put frame. Thus, subframe generation is accomplished by
the equation

y∗
k = γk

(

ψ
(

C−1
k

(

IN1N2×N1N2
⊗ ˜̄C

)

Hx
))

(11)

whereψ(.) represents the clipping operation andγk(.) rep-
resents gamma correction. This operation may be under-
stood as spatially varying color separable filtering followed
by a per-pixel3×3 color tranformation followed by gamma
correction.

5. Experimental Results

We demonstrate in this section experimental results on pro-
totype real-time superimposed display systems. The sys-
tems consist of substantially overlapping multiple “low res-
olution” 1024x768 projectors and displaying higher reso-
lution content (at least 1.25 times higher in resolution) on
them. A workstation fitted with multiple commodity graph-
ics cards computes the optimal subframes and drives the
projectors using custom code written in C++ and OpenGL.
A computer-controlled Firewire camera is used to automat-
ically calibrate the superimposed projectors as describedin
Section 3. For the discussion, it is assumed that the projec-
tors output onto a gain 1.0 planar screen surface. Also, the
projectors’ frame buffers are considered to be the aforemen-
tioned subframes.

The fast iterative algorithm from Section 4.3 is used to train
and compute appropriate space-varying filters at every pro-
jector pixel location. A neighborhood of4×4 is considered
for a total of 16 impulse training images. Because of the fil-
tering nature of the algorithm, it is efficiently implemented

on the pixel shaders of the graphics processing unit (GPU)
of commodity graphics cards. It should be emphasized that
the construction of these space-varying filters depends only
the geometric warps and not on the actual content to be dis-
played.

Once the above filters have been pre-computed for a given
projector configuration, they may be applied in real-time
to generate the final displayed output. For a given input
image, projectork’s subframeyk[i] is simply constructed by
using equation (10). With this construction, the subframes
are efficiently computed in parallel on GPU pixel shaders
and at real-time rates (60 fps for any number of projectors).

Fig. 4 shows an actual capture of a four-projector superim-
posed display. The desired image (1600x1200) is higher
resolution than any of the component projectors. Since
comparable results are observed everywhere in the dis-
played image, only a portion is shown for detail. A single
projector must either blur the high resolution input to pre-
vent aliasing or else alias to display high frequencies. Fig-
ure 4(a) shows a single subframe that exhibits severe alias-
ing. With accurate measurement and proper subframe gen-
eration to compensate for non-uniform supersampling, an
alias-free high resolution image may be rendered as shown
in Figure 4(b). Because of their lower relative brightness,
these two images have been contrast enhanced for better
comparison. One can observe the dramatic enhancement in
resolution and resolvability with the proposed algorithms.
One also can mitigate the screen door artifact from typical
projectors. Of course, the superimposed display naturally
becomes much brighter with the addition of each projector.

Figure 5(a) shows an example superimposed output im-
age after subframe generation, assuming that the projectors
are identical. Figure 5(b) shows the effect of incorporat-
ing measured luminance. Figure 5(a) shows relatively more
residual aliasing than Figure 5(b). In general, when the pro-
jectors are fairly similar these differences are subtle.

These examples highlight the feasibility and key advan-
tages of practical multi-projector super-resolution. Thepro-
totype systems perform very efficiently using commodity
GPU hardware. Geometric mappings are automatically
computed in less than eight seconds per projector, and the
four projectors’ subframes are generated at real-time 60 fps
rates, independent of the content dimensions. In contrast
to prior work [9], we believe these systems are the first su-
perimposed displays that demonstrate super-resolution for
arbitrary non-uniform sampling and at real-time rates.

6. Conclusion

We have demonstrated the viability of super-resolution via
the superimposition of multiple projectors. Theoretical



questions around the possibility of super-resolution have
been clearly resolved; more details on the theoretical as-
pects of superimposed projection may be found in [5, 6].
In addition, we have presented efficient and practical al-
gorithms that for the first time lead to real-time super-
resolution display systems. Moreover, these algorithms also
factor in differences among projector color and luminance.
Through resolution enhancement, we have shown that it is
possible to take full advantage of the brightness and reli-
ability of superimposed projection without compromising
image quality. We believe that this work highlights some
novel benefits of superimposed projection over traditional
tiled projection.

Appendix

The matrixAk in equation (1) can be derived as follows.
Since it applies the same processing to each color plane, it
may be decomposed asAk = Ãk ⊗ I3×3 whereÃk is an
M1M2 ×N1N2 matrix. Ãk is defined by a geometric map-
pingmk(·), a reconstruction PSFr(·) and a pre-filterp(·).
Consider how a color planel (after color transform and lu-
minance attenuation) is geometrically mapped to the refer-
ence coordinate system and resampled. First, the projector
pixels are reconstructed using a continuous reconstruction
filter r(u) by convolution:

zrec
k (u; l) =

∑

i

r(u − i)zk[i; l]

The reconstructed image is then warped to the continuous
target coordinate system. The warp is implemented using
an inverse warpm−1

k (.)from target to source:

z
warp
k (v; l) = zrec

k (m−1
k (v); l)

The warped image is pre-filtered with a continuous anti-
alias filterp(.)

z
fil
k (v; l) =

∫

t

p(v − t)zwarp
k (t; l)dt

The continuous pre-filtered images from all component pro-
jectors are then sampled to produce a discrete output image
at the target resolution:

x̂k[j; l] = z
fil
k (j; l)

The combined model incorporating the above steps is given
by

x̂k[j; l] =

∫

t

p(j − t)
∑

i

r(m−1
k (t) − i)zk[i; l]dt (12)

Equation (12) may be simplified as:

x̂k[j; l] =
∑

i

ρk[i, j]zk[i; l] (13)

where the resampling filtersρk[i, j] are given by:

ρk[i, j] =

∫

t

p(j − t)r(m−1
k (t) − i)dt (14)

=

∫

s

p(j − mk(s))r(s − i)

∣
∣
∣
∣

∂mk(s)

∂s

∣
∣
∣
∣
ds

where the Jacobian∂mk(s)
∂s

is introduced by a change of
variables. The resampling filters may be computed based
on (14) using numerical integration and stored or may be
computed efficiently on the fly during mapping if the recon-
struction filter and the resampling filters are approximated
by Gaussian profiles [8]. Since the model of (13) represents
a linear space varying filter bank, it may be represented as a
equivalent discrete model using general linear operatorsAk

encapsulating the entire resampling operation. Thus

x̂l
k = Ãk zl

k (15)

Considering all color planes, we have

x̂k = Ak zk (16)
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